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a b s t r a c t

In this paper, a new method for detecting a multi-cracked beam-like structure subjected

to a moving vehicle is presented. The crack model is adopted from fracture mechanics.

The dynamic response of the bridge–vehicle system is measured directly from the

moving vehicle. When moving along the structure, the moving vehicle causes small

In general, these small distortions are difficult to detect visually. However, wavelet

transform has recently emerged to be an effective method of detecting such small

distortions. Large values (peaks) in the wavelet transform indicate the existence of the

cracks. The locations of the cracks are pinpointed by positions of peaks of the wavelet

transform and the velocity of the moving vehicle. Numerical results show that the

method can detect cracks as small as 10% of the beam height. The proposed method is

applicable for low velocity-movements while high velocity-movements are not

recommended. The method presents an idea for measuring the vibration directly from

the vehicle for crack detection problem in practice.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The detection of cracks in mechanical systems and civil engineering structures has attracted many researchers in the
last three decades as reviewed by Dimarogonas [1]. There are a large number of methods for crack detection that are based
on the changes in the dynamic properties of the structure since cracks in structures may have a serious influence on their
dynamic characteristics. The fact that a crack or local defect affects dynamic characteristics of structural members was
known long ago [2]. According to the survey of Dimarogonas [1], in general, basic crack models exist, viz: the local
flexibility model, the local bending moment or the equivalent reduced cross section model with magnitudes estimated by
experimentation or by use of fracture mechanics. In practice, there are so many parameters that can be varied in vibration
of cracked structures that it would be very difficult to present and compare results for all cases, for example modeling of
the crack, coupling of flexural and longitudinal vibration. In order to apply test results considered assumptions and
verifications for the crack models are required. The changes in stiffness, mass distribution and damping properties of the
structures caused by cracks or flaws can alter the dynamic response of the damaged structures. However, there are various
limitations in adopting this approach as the modification of the stress field induced by the crack declines with the distance
from the crack [3–5]. Some other methods based on changes in modal parameters were also applied to the issue of damage
detection. Pandey et al. [6] proposed the application of mode shape curvature in detecting damage. The reduction in cross
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section caused by the damage tends to increase the curvature of the mode shapes in the vicinity of the damage. Verboven
et al. [7,8] presented autonomous damage detection methods based on modal parameters. The changes in mode shapes of a
slat track structure caused by the damage were auto-identified by using the frequency-domain maximum likelihood
estimator method. Hu and Liang [9] proposed an integrated approach to detect cracks using the knowledge of changes in
natural frequencies. In their work, the spring model and continuum damage model were combined to calculate crack
locations and crack depths. Based on this approach, Patil and Maiti [10] developed a technique for detection of multiple
cracks in slender beams which extends the scope of the method given in [9] from a single segment beam to multi-segment
beams and eliminates the symbolic computation to determine the uncracked beam mode shapes. Damage assessment of
multiple cracked beams was also studied by Ruotolo and Surace [11] using finite element model of the structure and
genetic algorithms. In practice, a crack may not be only open or closed at all times, but it can open and close regularly
depending on loading conditions on the cracked structure (residual loads, body weight of a structure, etc.), and the
vibration effect. This crack type was termed a ‘‘breathing crack’’ and was discussed by Chondros et al. [12]. The dynamic
response to harmonic excitation of a beam with several breathing cracks was analyzed by Ruotolo and Surace [13]. The
authors used the ‘‘harmonic balance’’ approach to demonstrate that the presence of breathing cracks in a beam results in
nonlinear dynamic behavior of the beam.

In the last decade, the wavelet transform has been shown as an efficient tool for signal processing due to its flexibility
and precision in time and frequency resolution. Lu and Hsu [14] presented a wavelet based method for detection of
structural damage. The minor localized damage induced significant changes of the wavelet coefficients at the location of
the damage. Hong et al. [15] investigated the effectiveness of the continuous wavelet transform (CWT) in terms of its
capability to estimate the Lipschitz exponent. In their study, the magnitude of the Lipschitz exponent was used as an
indicator of the extent of damage when studying bending mode shapes of a cracked beam. A double-cracked beam was
studied by Loutridis et al. [16]. The positions of the cracks were detected by the sudden changes in the spatial variation of
the CWT. Poudel et al. [17] presented a wavelet-based method to localize damage in cantilever and simply supported
beams using static deflection. In their experiments, the static deflections were obtained by processing digital photographs
of the beams. Recently, Castro et al. [18,19] presented a wavelet based method for defect identification in rods subject to
free and forced vibration. The existence and the location of the damage caused by local changes in density or stiffness of
the rods, were detected by applying wavelet transform. The author of this paper and his co-author [20] presented a method
for remote monitoring the cracked structure using the breathing crack phenomenon and wavelet transform. In this study,
the crack was detected by analyzing the discontinuity of the dynamic response obtained from only one measurement
point.

The analysis of continuous elastic systems subjected to moving subsystems has been a topic of interest for well over a
century. Especially in bridge engineering many applications have been developed from the study of this subject. Parhi and
Behera [21] presented an analytical method along with experimental verification to investigate the vibration behavior of a
cracked beam under a moving mass. The Runge–Kutta method was used to solve the differential equations involved in
analyzing the dynamic deflection of a cantilever beam. Piombo et al. [22] calculated the vehicle–bridge interaction system
by considering it as a three-span orthotropic plate subject to a seven degrees-of-freedom multi-body system with linear
suspensions and tires flexibility. Mahmoud and Abouzaid [23] presented iterative methods for the effect of single
transverse cracks on the dynamic behavior of simply supported and cantilever undamped Euler–Bernoulli beams subject to
a moving mass. According to this study the effect of the inertia force due to the moving mass is qualitatively similar, as well
as additive, to the effect of the crack. Lee et al. [24] proposed a procedure for identification of the operational modal
properties and the assessment of damage locations and their associated severities. The damage assessment was carried out
based on the estimated modal parameters using the neural networks technique. Bilello and Bergman [25] studied damaged
beams under a moving load. The damages were modeled by rotational springs whose compliance was evaluated using
linear elastic fracture mechanics. Recently, Zhu and Law [26] successfully used CWT for crack detection by analyzing the
operational deflection time history of a bridge subject to a moving vehicular load. Most of the current methods apply
dynamic responses obtained from points on the bridge for crack detection.

The aim of this study is to extend the state-of-art of structural damage detection for bridges by presenting the wavelet
based technique for the investigation of the dynamic response of a cracked beam-like bridge measured directly from the
moving vehicle. It is a novel and simple method since it uses the dynamic response measured directly from the moving
vehicle instead of responses measured on the bridge so that there is no need to set up measurements on the bridge. The
theoretical model of a beam-like bridge with cracks and wavelet transform are presented. Numerical calculation is carried
out to study the efficiency of the proposed technique.
2. Vibration of a beam-like structure under moving vehicle

2.1. Intact beam

We begin by considering the bridge–vehicle system shown in Fig. 1. In this study the half-vehicle model is adopted. The
crack is assumed to be open all the time for the purpose of simplification. The bridge deck is modeled approximately as an
Euler–Bernoulli beam. The surface unevenness of the bridge is disregarded and the tyres are assumed to be always in
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Fig. 1. A beam-like bridge under moving vehicle.
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contact with the supported beam. Under these assumptions and based on [27,28] the governing equation of motion for the
bridge–vehicle system can be derived as follows:
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Here I0, b1, b2, m0, m1, m2, k1, k2, k3, k4, c1, c2, c3, c4 are vehicle parameters as shown in Fig. 1; d1, d2, d3, d4 denote the
vehicle degrees of freedom; v is the vehicle velocity; u1, u2 are the vertical displacements of the contact points and equal to
the vertical displacement of the beam at the contact positions; [M], [C] and [K] are structural mass, damping and stiffness
matrices; f1 and f2 are the interaction forces acting on the beam for contact points 1 and 2; g is gravitational acceleration;
[N]T is the transposition of the shape functions at the position x of the interaction force; d is the nodal displacement of the
beam. The displacement of the beam u at the arbitrary position x can be obtained from the shape functions [N] and the
nodal displacement d as [28]

u¼ ½N�fdg (5)

The shape function of an element can be obtained as
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with l being the length of the element.
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The time derivatives of u are

_uðx,tÞ ¼
@u
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_xþ
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@t
(8)

Because [N] is a spatial function while d is time dependent, from (5) we have
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¼ ½N�x d

� �
(9)

where the subscript x implies the differentiation with respect to x. Substituting (8) and (9) into Eqs. (1) and (2) yields:
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2.2. Multi-cracked beam-like structure

Fig. 2 shows a uniform beam-like structure divided into Q elements with R cracks situated in R different elements. It is
assumed that the cracks only affect the stiffness, while the mass and damping coefficient of the beam remain constant.
According to the principle of Saint-Venant, the stress field is only affected in the region adjacent to the crack. Therefore, the
element stiffness matrices of intact elements can be considered unchanged under certain limitations of element sizes, thus
only the element stiffness matrices of cracked elements are changed. An element stiffness matrix of a cracked element can
be obtained as follows [29]: Neglecting shear action, the strain energy of an element without a crack can be written as
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Fig. 2. Model of beam with R cracks.
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where P and M are the shear and bending internal forces at the right node of the element (Fig. 2). The additional stress
energy of a crack has been calculated from fracture mechanics and the flexibility coefficients are obtained by a stress
intensity factor in the linear elastic range, using Castigliano’s theorem. For a rectangular beam with the thickness h, the
width b, and the additional energy due to the crack can be written as

W ð1Þ ¼ b

Z a

0
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þ
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III
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� 	
da (14)

where E0=E for plane stress, E0=E/1�n2 for plane strain and a is the crack depth, and KI, KII, KIII are stress intensity factor for
opening type, sliding type and tearing type cracks, respectively.

Taking into account only bending, Eq. (14) leads to
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The generic component of the flexibility matrix ~C of the intact element can be calculated as

~c ðoÞij ¼
@2W ðoÞ
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The additional flexibility coefficient is
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Therefore, the total flexibility coefficient is
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From the equilibrium condition the following equation can be derived:
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By the principle of virtual work the stiffness matrix of the cracked element can be expressed as

½K�c ¼ ½T�
T ½ ~C �½T� (24)

The stiffness matrix and mass matrix for an element without a crack can be obtained as
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where I is the moment of inertia; E is Young’s modulus; m and l are the mass and the length of the element, respectively.
Element mass matrices [M]e are assembled to form the global mass matrix [M], while matrices [K]e and [K]c are

assembled to form the global stiffness matrix [K] of the cracked beam. Rayleigh damping in the form of ½C� ¼ a½M�þb½K� is
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used for the beam. Where a and b are calculated as follows [28]:

a¼ 2o1o2ðx1o2�x2o1Þ

o2
2�o2

1

, b¼
2ðx2o2�x1o1Þ

o2
2�o2

1

(27)

Substituting global matrices [M], [C], and [K] of the cracked beam into Eq. (10) and solving this equation by the
Newmark method, the dynamic responses of the vehicle and the beam will be obtained.

3. Wavelet transform

As the name suggests, wavelet transform analysis uses small wavelike functions known as ‘‘wavelets’’. A more accurate
description is that a wavelet is a function which has local wavelike properties. Wavelets are used to transform a signal into
another form of presentation in which the signal information is presented in a more useful form. Mathematically, the
wavelet transform is a convolution of the wavelet function with the signal. Generally, wavelet transform transforms signals
in time (or space) domain into time (or space)–frequency domain. This means that, via wavelet transform, a signal is
presented in the frequency domain while the information in time (or space) domain is still retained. This is very useful for
analysing short events or sudden changes contained in signals.

3.1. Continuous wavelet transform

The continuous wavelet transform is defined as follows [30]:

Wða,bÞ ¼
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a
p R þ1

�1
f ðtÞc� t�b

a

� �
dt

(28)

where a is a real number called scale or dilation, b is a real number called position, W(a,b) are wavelet coefficients at
scale a and position b, f(t) is input signal, c(t�b/a) is wavelet function and c�(t�b/a) is complex conjugate of c(t�b/a). In
order to simplify the expression of the wavelet transform, denote ca,bðtÞ ¼ ð1=

ffiffiffi
a
p
Þc�ðt�b=aÞ, the wavelet transform (28) can

be written
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In order to be classified as a wavelet a function must satisfy the following mathematical criteria:
(1)
 A wavelet must have finite energy
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This implies that the wavelet has no zero frequency component: ĉð0Þ ¼ 0,Z þ1
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cðtÞe�jot dt¼ 0 when o¼ 0 (33)

or in other words, the wavelet must have a zero meanZ þ1
�1

cðtÞdt¼ 0 (34)

An additional criterion is that, for complex wavelets, the Fourier transform must both be real and vanish for negative
(3)

frequencies.
3.2. Inverse wavelet transform

Wavelet transform has its inverse transform:

f ðtÞ ¼ C�1
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(35)
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where

Cg ¼ 2p
Z1
�1

ĉðxÞ
 2

x
  dxo1 (36)

Eq. (35) can be rewritten as follows:

f ðtÞ ¼ C�1
g
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�1
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Wða,bÞca,b db

� �
da (37)

4. Numerical simulation and discussions

A numerical example of a beam with two cracks at locations of Lc1=L/3 and Lc2=2L/3 is analyzed. The crack depths of the
two cracks are identical. Parameters of the beam are: Mass density is 7855 kg/m3; modulus of elasticity E=2.1�1011 N/m2;
L=50 m; b=1 m; h=2 m. Modal damping ratios for all modes are equal to 0.01. Vehicle parameters are adopted from [31] as
follows: m0=12,404 kg; m1=m2=725.4 kg; k1=1,969,034 N/m; k2=727,812 N/m; k3=4,735,000 N/m; k4=1,972,900 N/m;
c1=7181.8 N s/m; c2=2189.6 N s/m; c3=c4=0 N s/m; I0=172,160 kg m2; b1=b2=3 m. The displacement–time history of the
moving vehicle is obtained to investigate the influence of the cracks. When the beam is cracked, there are distortions in the
dynamic response of the vehicle at the crack locations. However, these local distortions are generally small and difficult to
detect visually. Therefore, in this work the CWT, with its special properties, is applied for data processing. After trying several
differing wavelet functions for signal processing, the wavelet function ‘‘Symlet’’ is chosen as the most suitable for this study.

In this section the influence of the cracks on the dynamic response of the vehicle moving with different velocities on the
intact beam and the cracked beam is studied. Fig. 3 presents the dynamic responses of the vehicle moving at different
velocities on the intact beam and the cracked beam with the crack depth of 50% of the beam height. As can be seen from
this figure, considering a vehicle travelling at the same velocity, the dynamic response of the vehicle moving on the cracked
beam is greater than that of the intact beam. However, no sign of local distortions caused by cracks can be seen in this
figure. This is obviously true for the case of the intact beam (solid lines), but for the cracked beam (dotted lines) this means
that the local distortions in the dynamic response of the vehicle caused by the cracks is extremely small.
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Fig. 3. Displacements of the vehicle moving on the beam with cracks (dotted lines) and without cracks (solid lines), with different velocities: (a) v=2 m/s,

(b) v=5 m/s, (c) v=20 m/s, and (d) v=40 m/s.
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4.1. Influence of the crack depth

In order to detect local distortions in the dynamic response of the vehicle due to the presence of cracks, the wavelet
transform is applied. The velocity of the vehicle is v=2 m/s. Fig. 4 shows the wavelet transform of the vertical displacement
of the vehicle. As can be seen in this graph, there are no significant peaks in the wavelet transform. However, when
cracks are present, the wavelet transforms, using a scale of 50, clearly show four peaks at t=5.3, 8.3, 13.7, and 16.7 s
(see Figs. 5–7). The peaks at t=5.3 and 8.3 s correspond to the moments when the first leg and the second leg of the vehicle
pass by the location of L/3 of the beam, while the peaks at t=13.7 and 16.7 s correspond to that of 2L/3. The peaks of the
wavelet transforms explain that there are distortions in the dynamic response of the vehicle at moments when the two
legs pass by the crack positions. This result implies that the cracks cause the distortions in the dynamic response of the
vehicle at their locations, or in other words, the distortions in the dynamic response appear when the moving vehicle is
passing by the crack locations. Therefore, the peaks in the wavelet transform indicate the existence of the cracks, and the
positions of these cracks can be easily ascertained from the positions of the peaks and the velocity of the vehicle.
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Fig. 4. Wavelet transform of d2(t). Crack depth is 0% and v=2 m/s.
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Fig. 5. Wavelet transform of d2(t). Crack depth is 10% and v=2 m/s.
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Fig. 7. Wavelet transform of d2(t). Crack depth is 50% and v=2 m/s.
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Fig. 6. Wavelet transform of d2(t). Crack depth is 30% and v=2 m/s.
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As can be seen in Figs. 5–7, when the crack depth increases from 10% to 50%, the peaks at moments when the two legs
pass by the position of the crack are more significant. This means that the larger the crack depth is the more consistent the
proposed method for crack detection becomes.

4.2. Influence of the velocity of the moving vehicle

In this study, the influence of the velocity of the moving vehicle on the crack detection problem is also investigated.
While cracks as small as 10% of the beam height can be detected when the vehicle is moving at low velocity as presented in
the above section, they are very difficult to be revealed at high velocities. In case of high velocities, distortions caused by
cracks can only be detected for various specific velocities and in respect of cracks with depths larger than or equal to 50%.
Fig. 8 presents the wavelet transforms with scale 5 of the vertical displacements of the vehicle moving at the speed of
30 m/s on the cracked beam with the crack depth of 50%. In this figure, only two peaks, corresponding to the moments
when the second leg passes by the cracks, are detected and the peak values are very small in comparison with the case of
low velocity shown in Section 4.1. This means that it is much more difficult to detect the cracks when the vehicle velocity is
high.

As can be seen in Fig. 8, the two significant peaks are sharper in comparison with the case of low velocity. As presented
when the velocity is low, the significant peaks in wavelet transform occur at scale 50. But when the velocity is higher, the
significant peaks appear at the smaller scale 5. According to the wavelet transform, this expresses that when the vehicle
travels at low speed it causes low frequency (high scale) distortions in the dynamic response of the vehicle and when the
vehicle travels at high speed it causes distortions with higher frequencies (low scale).

4.3. Influence of the noise

In order to simulate the polluted measurements, white noise is added to the calculated responses of the vehicle. The
noisy response is calculated as following formula:

d2noisy ¼ d2þEpNsðd2Þ (38)

where d2 is the vertical displacement of the vehicle body obtained from the numerical simulation. Ep is the noise level and
N is a standard normal distribution vector with zero mean value and unit standard deviation. d2noisy is the noisy
displacement, and s(d2) is its standard deviation.

Fig. 9 show the wavelet transform of the noisy and unnoisy responses of the vehicle moving on the beam with the crack
depth of 50% and the velocity of the vehicle at 2 m/s. In this case, the cracks can be detected with the noise level up to 6%.
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Fig. 8. Wavelet transform of d2(t). Velocity is 30 m/s and crack depth is 50%.
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Fig. 9. Wavelet transform of dynamic responses of the vehicle, v=2 m/s. Solid line: 0% noise; dotted line: 6% noise.
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5. Conclusions

A new technique for structural damage detection based on the wavelet transform of the dynamic response obtained
from a moving vehicle is presented.

The existence of the cracks is detected by the large values (peaks) in the wavelet transform of the dynamic response.
The positions of the cracks can be determined easily from the velocity of the vehicle and the locations of the peaks in the
wavelet transform.

The advantage of the method is that it removes the need of choosing the positions of sensors on the deck of the bridge
since the vibration data is measured directly from the moving vehicle. It is also a simple method because it uses only one
vibration transducer attached to the vehicle. In addition, no information of the intact structure is needed for crack
detection. From the results, the present method can be applied to detect small cracks with a depth of 10% of the beam
height. This method is more sensitive than frequency based methods since the natural frequencies are almost constant for
cracks up to a depth of 50% of the beam after which they slowly decrease [32,33].

From the investigation of the influence of the noise on the proposed method, it is concluded that the method can be
applied for the case of non-polluted measurements as well as for the case of polluted measurements with the noise level
up to 6%.

The proposed method can be applied efficiently with low vehicle speeds, while high speeds are not recommended.
To validate the method presented herein, experimental testing needs to be carried out at a future date.
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